If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+51x-42=0
a = 18; b = 51; c = -42;
Δ = b2-4ac
Δ = 512-4·18·(-42)
Δ = 5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5625}=75$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-75}{2*18}=\frac{-126}{36} =-3+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+75}{2*18}=\frac{24}{36} =2/3 $
| x^2/8+x/2 =10 | | 8.1p+2.3=5.1p-3.1 | | F(t)=-2t^2+22t | | 12y^2=+19y-18 | | 8x=12x+3 | | 11b+70=4 | | 7x2+7x+-8=0 | | 4x=12*7 | | 3x+6=51−2x | | 49+8x=x | | 8x+7=11x+1 | | 3y-4=8-y | | 7x+x+78=180 | | x^2+4x=14x | | 6*6x=x | | 8m+7=86 | | 2x^2−40x=172 | | 2(8x-5)=-4x | | 4^(2x-1)=8^(2x) | | 42=x(1.75) | | 5÷2x=25÷4 | | 3x+5=9(2x-3) | | 12+3d=27 | | 12=3d=27 | | F(2)=-3x+4 | | 5b+1=2b | | X/4+3x/2=2/5 | | F(2000)=5000-200x | | x=1.535/5 | | F(2)=5000-200x | | F(x)=5000-200x | | X/4-7/x=3/4 |